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LETTER TO THE EDITOR 

An heuristic approach to the structure of local minima of the 
Sherrington-Kirkpatrick model 

Kazuo Nokura 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received I O  August 1987 

Abstract. We introduce an heuristic method to obtain a large number of low-energy local 
minima of the S K  model. With this method and some assumptions, we present a simple 
explanation of the ultrametricity of local minima of the S K  model. 

Recently many studies of the spin-glass phase have suggested that it is mainly charac- 
terised by a large number of deep free-energy valleys. In particular, the success of 
Parisi's solution (Parisi 1980, 1983) of the Sherrington-Kirkpatrick ( S K )  model has 
not only given us a precise description of these valleys but also provided us with an 
interesting idea on the organisation of them. By studying this solution, it was clarified 
that, when natural distance d,, between two valleys a and p is introduced, the valleys 
are organised in a hierarchy which is characterised by an ultrametric structure (Mezard 
er a1 1984). More precisely, when we pick up any set of three valleys a, p and 7, the 
triangle formed by three distances do,, dPy and dgxy is either equilateral or isosceles 
with the third edge shortest. Since this result is a rather unexpected one and can be 
a universal property of the glassy phase (Kirkpatrick and Toulouse 1985, Rammal et 
al 1986), it will be illuminating to reduce it to simple and plausible assumptions on 
the system. In  this letter, to clarify the origin of this structure, we shall introduce an 
heuristic method by which we can obtain a large number of local minima ( T  = 0 
valleys) of the SK model. The point is the idea that the distribution of the effective 
fields over the system reflects the organisation of the low-energy local minima. This 
idea was inspired by the study of a simple model (Nokura 1987). Here we introduce 
this method and describe the main features of the results. 

The S K  model is the infinite-ranged random spin model described by 

Here J,, are the quenched random interactions with width N - ' / * ,  where N is the system 
size. We consider the Ising case in which U, = f 1. At T = 0, local minima are defined 
to be the configurations which satisfy the stability condition 

h p ,  > 0 (2) 

hi = J i j u j ,  (3) 
j # i  

for all i. Here hi is the effective field on site i. These states are easily obtained for 
small N from random configurations by iterations of spin flip which always makes 
energy lower (one-spin-flip method). The low-energy states, however, rarely appear 
by this method, especially for large N. To introduce our method, we first study the 
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distribution of h,,  which is given by 
l N  

N , = I  
P ( h ) = -  c 6 ( h , - h ) .  (4) 

For low-energy local minima, Anderson (1978) presenting a physical argument, showed 
that P ( h ) a  Ihl for small Ihl. Since this property is crucial in our method, we reproduce 
here the argument given by him. At a given local minima a, it is suggested to consider 
the cluster of sites with effective field smaller than h ( < < l ) ,  which are denoted by 
Sh = {il lhil < h } ,  and then introduce two effective fields hj and h:, which are given by 

h,E= J i j u j  (6)  
J E S l i  

where sh denotes the complement of S,. If i E Sh, hi means the effective field on the 
site in Sh produced by the cluster S,,. In this case, h f  is estimated to be ( t ~ / N ) l ' ~ ,  
where n = I s h /  = 2N I," P ( h )  dh is the number of sites in Sh. By demanding the con- 
sistency h - hj,  we see that P ( h )  should be proportional to Ihl. By this argument we 
also notice that the equation h - h ]  yields that hF- h ] ,  since h, = h ]  + h;-- h, i.e. the 
effective fields on Sh produced by $,, are rather small when h << 1. These observations 
lead us to the idea that, to obtain other local minima, it will be effective to flip the 
spins within Sh, since the change of energy by these flips is estimated to be C,sSl ,  hFu, - 
h d n  - h 2 d N  and very small. Now let us consider what happens when we set U, + -w, 
for all i E Sh. This operation violates the stability conditions C, = h,u, > 0. We estimate 
the degree of this violation in the following way. By u, + -U, for all iE S,, ,  C, is 
replaced by 

C ;  = ( h ;  - hF)u, (7)  
for j E s h .  Within sh, Ci is expected to be either positive or  negative with probability 
i, if we notice ( ~ h ~ ~ ) - ( ~ h ~ ~ ) ,  where ( ) denotes the site average over Sh. On the 
other hand, for the sites with lh,l> h, C, remains positive. Then we expect that, with 
some procedure to achieve another local minimum ,6 from this state, about half of the 
spins within Sh remain to be flipped with little change in sh. The cluster of these spins 
is denoted by Rh = {ilupuf = - 1 ) .  The distance between a and p is usually defined 
by dffp = [ & , I .  The overlap between a and ,6, qCrp = (1/ N )  C u;uf is related to d,, by 

To study these expectations, we have first obtained some low energy local minima 
by the one-spin-flip method, and applied our method to each of them with, for example, 
h = O . l n  ( n  = 1,. . . ,20).  We take N = 100 and 200 systems. The results of computer 
calculations are summarised in the following way. We usually obtained local minima 
with energy lower than the original states when h is small. This means that the states 
obtained by the one-spin-flip method usually have lower energy states close to each 
of them. The properties of R h ,  however, are not as simple as mentioned above. Firstly 
we should note that R,, depends upon the option to achieve the stability condition, so 
that Rh can be regarded as a function of h only if this option is fixed. Secondly we 
should admit that the sites with lh,l> h can flip spontaneously. This means that the 
relation Rh = Sh is not a precise one. The number of these flips, however, is small in 
comparison with lRh( when is not small. In spite of these aspects, the behaviour 
of Rh shows the following features which are consistent with the above expectation. 
We have noticed the relation IRhls instead of IRhl-f(Shl. This implies that there 

de, = N (  1 - qc,p ) / 2 .  
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are some h with which our method is not so effective to produce local minima with 
the expected number of spif! flips. It is convenient to define Ikhl= maxhcrhl,h2l/&,/ with 
suitable h 2 - h , ,  so that lRhl indicates the maximal situation around h. This lkhI 
seems to change discontinuously when it is plotted against I s h / .  This may imply that 
there are some favourable numbers of spin flips which may reflect the structure of the 
configuration space, yet we have no explanation for these numbers. In  addition to 
this we have noticed the following interesting relations among the E,. Let us consider 
h, and h,. From a given state a, we obtained tw: local minima p and y, which are 
characterised by kh, and  RI,,. When lRhyl >> lRhpl >> 1, which means- h, >> h,, the 
computer calculations strongly suggest that about half of the sites in R,, belong to 
Rhy. This property, which at first sight looks strange, can be understood easily if we 
assume that the spin flips in SI,, and s h ,  occur independently. Taking into account 
that i E E, with probability 4 when i E Sh, we notice that the sites which belong to S,,  
also belong to ]ih,; with probability t .  This leads us to the property mentioned above. 
Disregarding the lRhfi1”* correction, this property gives the relation l]iI,, n !?,,I= ;\!?,,,I. 
Using d,, = lkhpl, d,,, = lEhyl and d P y  = Ik,,,l+ lkhyl-2/k,, n k,,,I, we reach the relation 
d,, = dPy  > d,,,, so that the set of these three states satisfy the condition of the ultrametric 
structure. In  this way, this structure is reduced to two simple assumptions on the local 
minima of the system. (i) From a given local minimum, other local minima are produced 
by the spin flips of about half of the sites with Ih,l< h for several h. (ii) The sites on 
which the spin flips occur are independent of h chosen in ( i ) .  At this stage one may 
wonder if the same state is produced or not when h, + h,. We should note here that 
our method is not continuous with respect to h. I n  fact, we have noticed two cases 
when h,-h,. One is that the three d are nearly the same and the other is that 
d,, << d,, - duy ,  i.e. /3 and y are two ensemble states. To give more precise descriptions 
of the obtained local minima, it is necessary to evaluate the overlap functions. At low 
temperature they are characterised by local minima with E,, - Eo - O( 1) and dmo - N,  
where Eo is the absolute minimum of H.  Our method implies that E, - E, - O( 1) with 
probability - N-”2 , when /3 is produced from a with h - 1. If we obtain L ( N )  states 
from a, we will have m = N-”’L(  N )  states which satisfy the condition E,, - E, - O( 1). 
Unfortunately we have no idea on L ( N ) .  Whether m is larger than 1 or not seems to 
strongly depend upon samples, starting states and h. To study the whole configuration 
space with condition E,, - Eo - O( 11, it is desirable to take many local minima as the 
starting state. When N is not large, for example 100, it often happens that different 
starting states produce the same low-energy state. This implies that we cover the whole 
configuration space by this method. The details of the numerical results will be 
presented elsewhere. 

The author is thankful to Dr  K Nemoto, Professor H Takayama and Professor T 
Tsuneto for discussions on this method. 
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